Due to their unpredicted scope, duration, and effects, soil droughts pose a serious threat to agriculture. Gradual steppe formation and desertification of farming and horticultural lands are the consequences of climate change. Irrigation systems for field crops do not offer the most viable solution, as they depend heavily on freshwater resources, which are currently scarce.
View Article and Find Full Text PDFPlant adaptation to soil drought is a topic that is currently under investigation [...
View Article and Find Full Text PDFThe aim was to identify subgenome-related specific responses in two types of triticale, that is, of the wheat-dominated genome (WDG) and rye-dominated genome (RDG), to water stress induced in the early phase (tillering) of plant growth. Higher activity of the primary metabolism of carbohydrates is a feature of the WDG type, while the dominance of the rye genome is associated with a higher activity of the secondary metabolism of phenolic compounds in the RDG type. The study analyzed carbohydrates and key enzymes of their synthesis, free phenolic compounds and carbohydrate-related components of the cell wall, monolignols, and shikimic acid (ShA), which is a key link between the primary and secondary metabolism of phenolic compounds.
View Article and Find Full Text PDFSweet briar (Rosa rubiginosa) belongs to the group of wild roses. Under natural conditions it grows throughout Europe, and was introduced also into the southern hemisphere, where it has efficiently adapted to dry lands. This review focuses on the high adaptation potential of sweet briar to soil drought in the context of global climatic changes, especially considering steppe formation and desertification of agricultural, orchard, and horticultural areas.
View Article and Find Full Text PDFSoil drought is one of the major abiotic stresses that inhibits the growth, development, and yield of crops all over the world [...
View Article and Find Full Text PDF