WHIRLY1 belongs to a family of plant-specific transcription factors capable of binding DNA or RNA in all three plant cell compartments that contain genetic materials. In Arabidopsis thaliana, WHIRLY1 has been studied at the later stages of plant development, including flowering and leaf senescence, as well as in biotic and abiotic stress responses. In this study, WHIRLY1 knockout mutants of A.
View Article and Find Full Text PDFMonogalactosyldiacylglycerol (MGDG) is the main lipid constituent of thylakoids and a structural component of photosystems and photosynthesis-related proteo-lipid complexes in green tissues. Previously reported changes in MGDG abundance upon stress treatments are hypothesized to reflect mobilization of MGDG-based polyunsaturated lipid intermediates to maintain extraplastidial membrane integrity. While exchange of lipid intermediates between compartmental membranes is well documented, physiological consequences of mobilizing an essential thylakoid lipid, such as MGDG, for an alternative purpose are not well understood.
View Article and Find Full Text PDFPlants respond to drought by the major reprogramming of gene expression, enabling the plant to survive this threatening environmental condition. The phytohormone abscisic acid (ABA) serves as a crucial upstream signal, inducing this multifaceted process. This report investigated the drought response in barley plants (, cv.
View Article and Find Full Text PDFWHIRLY1, a small plant-specific ssDNA-binding protein, dually located in chloroplasts and the nucleus, is discussed to act as a retrograde signal transmitting a stress signal from the chloroplast to the nucleus and triggering there a stress-related gene expression. In this work, we investigated the function of WHIRLY1 in the drought stress response of barley, employing two overexpression lines (oeW1-2 and oeW1-15). The overexpression of delayed the drought-stress-related onset of senescence in primary leaves.
View Article and Find Full Text PDFThe heavy metal associated isoprenylated plant proteins (HIPPs) are characterized by at least one heavy metal associated (HMA) domain and a C-terminal isoprenylation motif. farnesylated protein 1 (HvFP1), a barley HIPP, is upregulated during drought stress, in response to abscisic acid (ABA) and during leaf senescence. To investigate the role of HvFP1, two independent gain-of-function lines were generated.
View Article and Find Full Text PDF