Purpose To develop a custom deep convolutional neural network (CNN) for noninvasive prediction of breast cancer nodal metastasis. Materials and Methods This retrospective study included patients with newly diagnosed primary invasive breast cancer with known pathologic (pN) and clinical nodal (cN) status who underwent dynamic contrast-enhanced (DCE) breast MRI at the authors' institution between July 2013 and July 2016. Clinicopathologic data (age, estrogen receptor and human epidermal growth factor 2 status, Ki-67 index, and tumor grade) and cN and pN status were collected.
View Article and Find Full Text PDFObjective: Breast cancer clinical stage and nodal status are the most clinically significant drivers of patient management, in combination with other pathological biomarkers, such as estrogen receptor (ER), progesterone receptor or human epidermal growth factor receptor 2 (HER2) receptor status and tumor grade. Accurate prediction of such parameters can help avoid unnecessary intervention, including unnecessary surgery. The objective was to investigate the role of magnetic resonance imaging (MRI) radiomics for yielding virtual prognostic biomarkers (ER, HER2 expression, tumor grade, molecular subtype, and T-stage).
View Article and Find Full Text PDFPurpose: To develop a portable MR perfusion phantom for quality-controlled assessment and reproducibility of arterial spin labeled (ASL) perfusion measurement.
Methods: A 3D-printed perfusion phantom was developed that mimics the branching of arterial vessels, capillaries, and a chamber containing cellulose sponge representing tissue characteristics. A peristaltic pump circulated distilled water through the phantom, and was first evaluated at 300, 400, and 500 mL/min.
Background: Diffusion-weighted imaging (DWI) is commonly used to detect prostate cancer, and a major clinical challenge is differentiating aggressive from indolent disease.
Purpose: To compare 14 site-specific parametric fitting implementations applied to the same dataset of whole-mount pathologically validated DWI to test the hypothesis that cancer differentiation varies with different fitting algorithms.
Study Type: Prospective.
Med Image Comput Comput Assist Interv
October 2020
In breast cancer, undetected lymph node metastases can spread to distal parts of the body for which the 5-year survival rate is only 27%, making accurate nodal metastases diagnosis fundamental to reducing the burden of breast cancer, when it is still early enough to intervene with surgery and adjuvant therapies. Currently, breast cancer management entails a time consuming and costly sequence of steps to clinically diagnose axillary nodal metastases status. The purpose of this study is to determine whether preoperative, clinical DCE MRI of the primary tumor alone may be used to predict clinical node status with a deep learning model.
View Article and Find Full Text PDF