A new dark sector antibaryon, denoted ψ_{D}, could be produced in decays of B mesons. This Letter presents a search for B^{+}→ψ_{D}+p (and the charge conjugate) decays in e^{+}e^{-} annihilations at 10.58 GeV, using data collected in the BABAR experiment.
View Article and Find Full Text PDFAxionlike particles (ALPs) are predicted in many extensions of the standard model, and their masses can naturally be well below the electroweak scale. In the presence of couplings to electroweak bosons, these particles could be emitted in flavor-changing B meson decays. We report herein a search for an ALP, a, in the reaction B^{±}→K^{±}a, a→γγ using data collected by the BABAR experiment at SLAC.
View Article and Find Full Text PDFWe report on the first search for electron-muon lepton flavor violation (LFV) in the decay of a b quark and b antiquark bound state. We look for the LFV decay ϒ(3S)→e^{±}μ^{∓} in a sample of 118 million ϒ(3S) mesons from 27 fb^{-1} of data collected with the BABAR detector at the SLAC PEP-II e^{+}e^{-} collider operating with a 10.36 GeV center-of-mass energy.
View Article and Find Full Text PDFCollider searches for dark sectors, new particles interacting only feebly with ordinary matter, have largely focused on identifying signatures of new mediators, leaving much of dark sector structures unexplored. In particular, the existence of dark matter bound states (darkonia) remains to be investigated. This possibility could arise in a simple model in which a dark photon (A^{'}) is light enough to generate an attractive force between dark fermions.
View Article and Find Full Text PDFWe present the first joint analysis of cluster abundances and auto or cross-correlations of three cosmic tracer fields: galaxy density, weak gravitational lensing shear, and cluster density split by optical richness. From a joint analysis (4×2pt+N) of cluster abundances, three cluster cross-correlations, and the auto correlations of the galaxy density measured from the first year data of the Dark Energy Survey, we obtain Ω_{m}=0.305_{-0.
View Article and Find Full Text PDF