Publications by authors named "K Henkner"

Proton therapy (PT) is an advancing radiotherapy modality increasingly integrated into clinical settings, transitioning from research facilities to hospital environments. A critical aspect of the commissioning of a proton pencil beam scanning delivery system is the acquisition of experimental beam data for accurate beam modelling within the treatment planning system (TPS). These guidelines describe in detail the acquisition of proton pencil beam modelling data.

View Article and Find Full Text PDF

Fiducial markers are used for image guidance to verify the correct positioning of the target for the case of tumors that can suffer interfractional motion during proton therapy. The markers should be visible on daily imaging, but at the same time, they should produce minimal streak artifacts in the CT scans for treatment planning and induce only slight dose perturbations during particle therapy. In this work, these three criteria were experimentally investigated at the Heidelberg Ion Beam Therapy Center.

View Article and Find Full Text PDF

Background: Commissioning of treatment planning systems (TPS) and beam delivery for scanned light ion beams is an important quality assurance task. This requires measurement of large sets of high quality dosimetric data in anthropomorphic phantoms to benchmark the TPS and dose delivery under realistic conditions.

Method: A novel measurement setup is described, which allows for an efficient collection of a large set of accurate dose data in complex phantom geometries.

View Article and Find Full Text PDF

For regular quality assurance and patient-specific dosimetric verification under non-horizontal gantry angles in ion beam radiotherapy, we developed and commissioned a motorized solid state phantom. The phantom is set up under the selected gantry angle and moves an array of 24 ionization chambers to the measurement position by means of three eccentrically-mounted cylinders. Hence, the phantom allows 3D dosimetry at oblique gantry angles.

View Article and Find Full Text PDF

Modern radiotherapy (RT) techniques are widely used in the irradiation of moving organs. A crucial step in ensuring the correct position of a target structure directly before or during treatment is daily image guidance by computed tomography (CT) or X-ray radiography (image-guided radiotherapy, IGRT). Therefore, combinations of modern irradiation devices and imaging, such as on-board imaging (OBI) with X-rays, or in-room CT such as the tomotherapy system, have been developed.

View Article and Find Full Text PDF