Osteoarthritis Cartilage
June 2022
Objective: Cartilage collagen has very limited repair potential, though some turnover and incorporation has not been fully excluded. We aim to determine the regional turnover of human osteoarthritis cartilage.
Design: Patients scheduled for knee joint replacement surgery due to osteoarthritis were recruited in this prospective study of four weeks duration.
Objective: During skeletal growth, the articular cartilage expands to maintain its cover of bones in joints, however, it is unclear when and how cartilage grows. We aim to determine the expanding growth pattern and timing across the tibia plateau in human knees.
Design: Six human tibia plateaus (2 healthy, 2 with osteoarthritis, and 2 with posttraumatic osteoarthritis) were used for full-depth cartilage sampling systematically across the joint surface at 12 medial and 4 lateral sites.
Objectives: Bone and other human tissues remodel through life, for example, as a response to increasing load, and this prevents permanent destruction of the tissue. Non-traumatic meniscal rupture is a common musculoskeletal disease, but it is unknown if it is caused by inability of the menisci to remodel. The aim of this study was to determine whether meniscal collagen is remodelling throughout life.
View Article and Find Full Text PDFPurpose: The discovery of musculoskeletal tissues, including muscle, tendons, and cartilage, as peripheral circadian clocks strongly implicates their role in tissue-specific homeostasis. Age-related dampening and misalignment of the tendon circadian rhythm and its outputs may be responsible for the decline in tendon homeostasis. It is unknown which entrainment signals are responsible for the synchronization of the tendon clock to the light-dark cycle.
View Article and Find Full Text PDFTendons transmit contractile muscular force to bone to produce movement, and it is believed cells can generate endogenous forces on the extracellular matrix to maintain tissue homeostasis. However, little is known about the direct mechanical measurement of cell-matrix interaction in cell-generated human tendon constructs. In this study we examined if cell-generated force could be detected and quantified in engineered human tendon constructs, and if glycosaminoglycans (GAGs) contribute to tendon force transmission.
View Article and Find Full Text PDF