Publications by authors named "K Heberger"

Extended similarity indices (i.e., generalization of pairwise similarity) have recently gained importance because of their simplicity, fast computation and superiority in tasks like diversity picking.

View Article and Find Full Text PDF

This brief literature survey groups the (numerical) validation methods and emphasizes the contradictions and confusion considering bias, variance and predictive performance. A multicriteria decision-making analysis has been made using the sum of absolute ranking differences (SRD), illustrated with five case studies (seven examples). SRD was applied to compare external and cross-validation techniques, indicators of predictive performance, and to select optimal methods to determine the applicability domain (AD).

View Article and Find Full Text PDF

Non-negative matrix factorization (NMF) efficiently reduces high dimensionality for many-objective ranking problems. In multi-objective optimization, as long as only three or four conflicting viewpoints are present, an optimal solution can be determined by finding the Pareto front. When the number of the objectives increases, the multi-objective problem evolves into a many-objective optimization task, where the Pareto front becomes oversaturated.

View Article and Find Full Text PDF

Molecular dynamics (MD) is a core methodology of molecular modeling and computational design for the study of the dynamics and temporal evolution of molecular systems. MD simulations have particularly benefited from the rapid increase of computational power that has characterized the past decades of computational chemical research, being the first method to be successfully migrated to the GPU infrastructure. While new-generation MD software is capable of delivering simulations on an ever-increasing scale, relatively less effort is invested in developing postprocessing methods that can keep up with the quickly expanding volumes of data that are being generated.

View Article and Find Full Text PDF

The screening of compounds for ADME-Tox targets plays an important role in drug design. QSPR models can increase the speed of these specific tasks, although the performance of the models highly depends on several factors, such as the applied molecular descriptors. In this study, a detailed comparison of the most popular descriptor groups has been carried out for six main ADME-Tox classification targets: Ames mutagenicity, P-glycoprotein inhibition, hERG inhibition, hepatotoxicity, blood-brain-barrier permeability, and cytochrome P450 2C9 inhibition.

View Article and Find Full Text PDF