The present study is established on a simulation using CFD analysis in COMSOL. Blood acted as the base fluid with this simulation. The taken flow is been modeled as incompressible, unsteady, laminar and Newtonian fluid, which is appropriate at high rates of shear.
View Article and Find Full Text PDFAn exploration is made to investigate numerically and theoretically the time dependent flow of blood along with heat transfer through abnormal artery having trapezoidal shaped plaque. The flow is taken to be Newtonian, laminar, unsteady and incompressible. A suitable geometrical model is constructed to simulate the trapezoidal stenosis affected artery.
View Article and Find Full Text PDFLight-weight metal matrix composites, especially magnesium-based composites, have recently become more widespread for high-efficiency applications, including aerospace, automobile, defense, and telecommunication industries. The squeeze cast AZ91 base material (AZ91-BM) and its composites having 23 vol.% short carbon fibers were fabricated and investigated.
View Article and Find Full Text PDFIn this study, AZ91/23 vol.% short carbon fiber composite was produced by a squeeze casting technique using a cylindrical pre-form of treated carbon fibers, in which the fibers are randomly oriented in the horizontal plane. Cylindrical specimens (height = 9 mm and diameter = 6 mm) were machined from the as-cast AZ91 matrix and its composite.
View Article and Find Full Text PDFThe current work investigates the viability of utilizing a friction stir deposition (FSD) technique to fabricate continuous multilayer high-performance, metal-based nanoceramic composites. For this purpose, AA2011/nano AlO composites were successfully produced using AA2011 as a matrix in two temper conditions (i.e.
View Article and Find Full Text PDF