Publications by authors named "K H Spruijt"

Background: Pre-clinical studies demonstrate that delivering a high dose at a high dose rate result in less toxicity while maintaining tumor control, known as the FLASH effect. In proton therapy, clinical trials have started using 250 MeV transmission beams and more trials are foreseen. A novel aspect of FLASH treatments, compared to conventional radiotherapy, is the importance of dose rate next to dose and geometry.

View Article and Find Full Text PDF
Article Synopsis
  • * The study analyzed data from 66 UM patients, assessing 14 different dose-volume parameters and evaluating four toxicity profiles, including visual impairment and radiation-induced conditions.
  • * Results indicated that proton therapy often had advantages in reducing toxicity risks compared to SRT, particularly for higher-stage tumors, although the choice of treatment may depend on individual risk priorities.
View Article and Find Full Text PDF

Background & Purpose: Magnetic resonance imaging (MRI) is increasingly used in treatment preparation of ocular proton therapy, but its spatial accuracy might be limited by geometric distortions due to susceptibility artefacts. A correct geometry of the MR images is paramount since it defines where the dose will be delivered. In this study, we assessed the geometrical accuracy of ocular MRI.

View Article and Find Full Text PDF

Determining and verifying the number of monitor units is crucial to achieving the desired dose distribution in radiotherapy and maintaining treatment efficacy. However, current commercial treatment planning system(s) dedicated to ocular passive eyelines in proton therapy do not provide the number of monitor units for patient-specific plan delivery. Performing specific pre-treatment field measurements, which is time and resource consuming, is usually gold-standard practice.

View Article and Find Full Text PDF

Background: The first clinical trials to assess the feasibility of FLASH radiotherapy in humans have started (FAST-01, FAST-02) and more trials are foreseen. To increase comparability between trials it is important to assure treatment quality and therefore establish a standard for machine quality assurance (QA). Currently, the AAPM TG-224 report is considered as the standard on machine QA for proton therapy, however, it was not intended to be used for ultra-high dose rate (UHDR) proton beams, which have gained interest due to the observation of the FLASH effect.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: