Publications by authors named "K H George"

: The objective of this study was to assess clinical decision-making associated with the use of a multi-analyte blood biomarker (BBM) test among patients presenting with signs or symptoms of mild cognitive impairment or dementia. : The Quality Improvement PrecivityAD2 (QUIP II) Clinician Survey (NCT06025877) study evaluated the clinical utility of the PrecivityAD2™ blood test in a prospective, single cohort of 203 patients presenting with symptoms of Alzheimer's disease (AD) or other causes of cognitive decline across 12 memory specialists. The PrecivityAD2 blood test (C2N Diagnostics, St.

View Article and Find Full Text PDF

Precisely crafted hierarchical architectures found in naturally derived biomaterials underpin the exceptional performance and functionality showcased by the host organism. In particular, layered helical assemblies composed of cellulose, chitin, or collagen serve as the foundation for some of the most mechanically robust and visually striking natural materials. By utilizing structured materials in additive manufacturing techniques such as extrusion-based 3D printing, the intrinsic deformation process can be used to implement bottom-up design of printed constructs, offering the potential to create intricate macroscale geometries with embedded nanoscale functionality.

View Article and Find Full Text PDF

Objective: Cauda Equina Syndrome (CES) poses significant neurological risks if untreated. Diagnosis relies on clinical and radiological features. As the symptoms are often non specific and common, the diagnosis is usually made after a MRI scan.

View Article and Find Full Text PDF

Consolidated long-term memories can undergo strength or content modification via protein synthesis-dependent reconsolidation. This is the process by which a reminder cue initiates reactivation of the memory trace, triggering destabilization. Older and more strongly encoded spatial memories can resist destabilization due to biological boundary conditions.

View Article and Find Full Text PDF

Acid sphingomyelinase deficiency (ASMD) is a rare progressive genetic disorder caused by pathogenic variants in the gene causing low or absent activity of the enzyme acid sphingomyelinase, resulting in subsequent accumulation of its substrate, sphingomyelin. Signs and symptoms of excessive lysosomal sphingomyelin storage, such as hepatosplenomegaly and pulmonary impairment, and in a subset of patients, progressive neurological manifestations, have long been recognized as hallmarks of the disease. Uncontrolled accumulation of sphingomyelin has important and complex downstream metabolic and immunologic consequences that contribute to the disease burden.

View Article and Find Full Text PDF