Publications by authors named "K H Briar"

The interlamellar matrix (ILM), located between the annular layers of the intervertebral disc (IVD), is an adhesive component which acts to resist delamination. Investigating the mechanical properties of the ILM can provide us with valuable information regarding risk of disc injury; however given its viscoelastic nature, it may be necessary to conduct preconditioning on tissue samples before measuring these ILM properties. Therefore, the aim of this study was to optimize mechanical testing protocols of the ILM by examining the effect of preconditioning on stiffness and strength of this adhesive matrix.

View Article and Find Full Text PDF

Degenerative spinal disorders, including kyphotic deformity, are associated with a range of degenerative characteristics of the paraspinal musculature. It has therefore been hypothesized that paraspinal muscular dysfunction is a causative factor for degenerative spinal deformity; however, experimental studies demonstrating causative relationships are lacking. Male and female mice received either glycerol or saline injections bilaterally along the length of the paraspinal muscles at four timepoints, each separated by 2 weeks.

View Article and Find Full Text PDF

Purpose: To observe the effect of static flexion, in combination with compression, on the intralamellar and interlamellar matrix properties of the annulus fibrosus.

Methods: C3/C4 cervical functional spinal units of porcine specimens were selected. Following preloading, all specimens were loaded under 1200 N axial compression in either a neutral or static end range flexion posture (15º) for 2 h.

View Article and Find Full Text PDF

The intervertebral disc (IVD) is a complex structure, and recent evidence suggests that separations or delamination between layers of the annulus may contribute to degeneration development, a common cause of low back pain The purpose of the present experiment was to quantify the mechanical response of the layer-adjoining interlamellar matrix at different rates of separation. Understanding the rate-dependency of the interlamellar matrix, or the adhesion between adjacent layers of the disc, is important as the spine experiences various loading velocities during activities of daily living. Twelve discs were dissected from four bovine tails (three extracts per tail).

View Article and Find Full Text PDF

Purpose: Intervertebral disc (IVD) degeneration is accompanied by mechanical and gene expression changes to IVDs. SPARC-null mice display accelerated IVD degeneration, and treatment with (toll-like receptor 4 (TLR4) inhibitor) TAK-242 decreases proinflammatory cytokines and pain. This study examined if chronic TAK-242 treatment impacts mechanical properties and gene expression associated with IVD degeneration in SPARC-null mice.

View Article and Find Full Text PDF