Over the past decade, there has been a rapid development in the use of magnetic three dimensional (3D) based cell culture systems. Concerning the skeletal muscle, 3D culture systems can provide biological insights for translational clinical research in the fields of muscle physiology and metabolism. These systems can enhance the cell culture environment by improving spatially-oriented cellular assemblies and morphological features closely mimicking the in vivo tissues/organs, since they promote strong interactions between cells and the extracellular matrix (ECM).
View Article and Find Full Text PDFCurcumin (CUR) bifunctional cross-linked nanocomposite hydrogels are presented as an efficient method for CUR delivery in wound healing. CUR-loaded liposomes (CUR-Ls) were optimized using the Box-Behnken design to augment particle size, size distribution, zeta potential, and CUR concentration. The antioxidant activity and cytotoxicity of CUR-Ls were assessed.
View Article and Find Full Text PDFThis study investigated the development of a genipin-crosslinked chitosan (CS)-based polyvinylpyrrolidone (PVP) hydrogel containing curcumin nanosuspensions (Cur-NSs) to promote wound healing in an excisional wound model. Cur-NSs were prepared, and a simplex centroid mixture design was employed to optimize hydrogel properties for high water absorption, degree of crosslinking, and sufficient toughness. The in vivo wound healing effect was tested in Wistar rats.
View Article and Find Full Text PDFThe field of tissue engineering has remarkably progressed through the integration of nanotechnology and the widespread use of magnetic nanoparticles. These nanoparticles have resulted in innovative methods for three-dimensional (3D) cell culture platforms, including the generation of spheroids, organoids, and tissue-mimetic cultures, where they play a pivotal role. Notably, iron oxide nanoparticles and superparamagnetic iron oxide nanoparticles have emerged as indispensable tools for non-contact manipulation of cells within these 3D environments.
View Article and Find Full Text PDFBackground: Due to the low prevalence of clinically suspected malaria among pregnant women in Myanmar, little is known about its impact on mothers and newborns. Helminth and Human Immuno-deficiency Virus (HIV) co-infections cause anemia in pregnant women. This study assessed the prevalence of subclinical malaria and co-infections among pregnant women, and its association with adverse outcomes of pregnancy in the presence of infection.
View Article and Find Full Text PDF