Diet and its various components are consistently identified as among the most important 'risk factors' for cancer worldwide, yet great uncertainty remains regarding the relative contribution of nutritive (e.g., vitamins, calories) vs.
View Article and Find Full Text PDFPrimary cultures of human hepatocytes were used to investigate whether the dietary isothiocyanates, sulforaphane (SFN), and phenethyl isothiocyanate (PEITC) can reduce DNA adduct formation of the hepatocarcinogen aflatoxin B(1) (AFB). Following 48 h of pretreatment, 10 and 50 microM SFN greatly decreased AFB-DNA adduct levels, whereas 25muM PEITC decreased AFB-DNA adducts in some but not all hepatocyte preparations. Microarray and quantitative reverse transcriptase (RT)-PCR analyses of gene expression in SFN and PEITC-treated hepatocytes demonstrated that SFN greatly decreased cytochrome P450 (CYP) 3A4 mRNA but did not induce the expression of either glutathione S-transferase (GST) M1 or GSTT1.
View Article and Find Full Text PDFThis study employed cultured human primary hepatocytes to investigate the ability of the putative chemopreventive phytochemicals curcumin (CUR), 3,3'-diindolylmethane (DIM), isoxanthohumol (IXN), or 8-prenylnaringenin (8PN) to reduce DNA adduct formation of the hepatocarcinogen aflatoxin B1 (AFB). Following 48 h of pretreatment, DIM and 8PN significantly increased AFB-DNA adduct levels, whereas CUR and IXN had no effect. DIM greatly enhanced the transcriptional expression of cytochrome P450 (CYP) 1A1 and CYP1A2 mRNA.
View Article and Find Full Text PDFIn humans, apiaceous vegetables (carrots, parsnips, celery, parsley, etc.) inhibit cytochrome P-450 1A2, a biotransformation enzyme known to activate several procarcinogens, including aflatoxin B1 (AFB). We evaluated eight phytochemicals from apiaceous vegetables for effects on human cytochrome P-450 1A2 (hCYP1A2) activity using a methoxyresorufin O-demethylase (MROD) assay and a trp-recombination assay.
View Article and Find Full Text PDF1. Previous studies reported that rat hepatocytes overlaid with extracellular matrix components (Matrigel) maintain the expression and responsiveness of drug-metabolizing enzymes. However, whether Matrigel provides similar advantages in human hepatocytes remains largely uncertain.
View Article and Find Full Text PDF