J Phys Chem C Nanomater Interfaces
March 2022
Hexacene, composed of six linearly fused benzene rings, is an organic semiconductor material with superior electronic properties. The fundamental understanding of the electronic and chemical properties is prerequisite to any possible application in devices. We investigate the orientation and interface properties of highly ordered hexacene monolayers on Ag(110) and Cu(110) with X-ray photoemission spectroscopy (XPS), photoemission orbital tomography (POT), X-ray absorption spectroscopy (XAS), low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), and density functional theory (DFT).
View Article and Find Full Text PDFConfocal optical microscopy and tip-enhanced optical microscopy are applied to characterize the defect distributions in chemical vapor deposition-grown WS monolayer triangles qualitatively and quantitatively. The presence of defects in individual monolayer WS triangles is revealed with diffraction-limited spatial resolution in their photoluminescence (PL) images, from which the inhomogeneous defect density distribution is calculated, showing an inverse relationship to the PL intensity. The defect-related surface-enhanced Raman spectroscopy (SERS) effect is investigated by depositing a thin copper phthalocyanine layer (5 nm) as the probe molecule on the monolayer WS triangles surface.
View Article and Find Full Text PDFOrganic bilayer systems and heterostructures are of enormous importance for optoelectronic devices. We study interface properties and the structural ordering of cobalt phthalocyanine (CoPc) on a highly ordered monolayer hexa-peri-hexabenzocoronene (HBC), grown on Au(111), using photoemission, X-ray absorption, scanning tunneling microscopy, and low-energy electron diffraction. A charge transfer between CoPc and the gold substrate is almost completely prevented by the HBC intermediate layer.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
May 2021
Charge-transfer processes at molecule-metal interfaces play a key role in tuning the charge injection properties in organic-based devices and thus, ultimately, the device performance. Here, the metal's work function and the adsorbate's electron affinity are the key factors that govern the electron transfer at the organic/metal interface. In our combined experimental and theoretical work, we demonstrate that the adsorbate's orientation may also be decisive for the charge transfer.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2020
Electronic interface properties and the initial growth of hexa--hexabenzocoronene with a borazine core (BN-HBC) on Au(111) have been studied by using X-ray photoelectron spectroscopy (XPS), low-energy electron diffraction (LEED), and scanning tunneling microscopy (STM). A weak, but non-negligible, interaction between BN-HBC and Au(111) was found at the interface. Both hexa--hexabenzocoronene (HBC) and BN-HBC molecules form well-defined monolayers.
View Article and Find Full Text PDF