Publications by authors named "K Gokulan"

Zileuton is a leukotriene inhibitor used to treat asthma. As a BCS class II drug it exhibits challenges with solubility which likely impact its absorption. As patient gender significantly impacts the pharmacokinetics of many drugs, this study aimed to investigate potential gender-based pharmacokinetic differences after oral zileuton administration in rats.

View Article and Find Full Text PDF

Triclosan (TCS), a broad-spectrum antibacterial chemical, is detected in human urine, breast milk, amniotic fluid, and feces; however, little is known about its impact on the intestinal microbiome and host mucosal immunity during pregnancy and early development. Pregnant female rats were orally gavaged with TCS from gestation day (GD) 6 to postpartum (PP) day 28. Offspring were administered TCS from postnatal day (PND) 12 to 28.

View Article and Find Full Text PDF

Nanocrystal drug formulation involves several critical manufacturing procedures that result in complex structures to improve drug solubility, dissolution, bioavailability, and consequently the efficacy of poorly soluble Biopharmaceutics Classification System (BCS) II and IV drugs. Nanocrystal formulation of an already approved oral drug may need additional immunotoxic assessment due to changes in the physical properties of the active pharmaceutical ingredient (API). In this study, we selected Zileuton, an FDA-approved drug that belongs to BCS-II for nanocrystal formulation.

View Article and Find Full Text PDF

First-pass metabolism alters arsenic biotransformation and its immunomodulatory activities. This study aims to determine the mRNA expression of intestinal-immunity- and permeability-associated genes, levels of cytokine/chemokines and levels of immunoglobulin isotypes when CD-1 mice were exposed to a single dose of intravenous (IV) sodium arsenite (50 µg/kg body weight (BW)) and to compare these responses to exposure via oral gavage (OG) (50 µg/kg BW). Samples were collected at 1, 4, 24 and 48 h post IV exposure and 24 and 48 h post OG.

View Article and Find Full Text PDF

Bacterial species have evolved with a wide variety of cellular devices, and they employ these devices for communication and transfer of genetic materials and toxins. They are classified into secretory system types I to VI based on their structure, composition, and functional activity. Specifically, the bacterial type IV secretory system (T4SS) is a more versatile system than the other secretory systems because it is involved in the transfer of genetic materials, proteins, and toxins to the host cells or other bacterial species.

View Article and Find Full Text PDF