The synthesis and investigation of [Rh(DHMPE)][BF] () are reported. features proton-responsive 1,2-bis[(dihydroxymethyl)phosphino]ethane (DHMPE) ligands, which readily capture CO from atmospheric sources upon deprotonation. The protonation state of the DHMPE ligand was observed to have a significant impact on the catalytic reactivity of with CO.
View Article and Find Full Text PDFThe immobilization of molecular electrocatalysts on conductive electrodes is an appealing strategy for enhancing their overall activity relative to those of analogous molecular compounds. In this study, we report on the interfacial electrochemistry of self-assembled two-dimensional nanosheets of graphene nanoribbons () and analogs containing a Rh-based hydrogen evolution reaction (HER) catalyst () immobilized on conductive electrodes. Proton-coupled electron transfer (PCET) taking place at N-centers of the nanoribbons was utilized as an indirect reporter of the interfacial electric fields experienced by the monolayer nanosheet located within the electric double layer.
View Article and Find Full Text PDFMixed metal oxides (MMOs) are a promising class of electrocatalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Despite their importance for sustainable energy schemes, our understanding of relevant reaction pathways, catalytically active sites, and synergistic effects is rather limited. Here, we applied synchrotron-based X-ray absorption spectroscopy (XAS) to explore the evolution of the amorphous Co-Cu-W MMO electrocatalyst, shown previously to be an efficient bifunctional OER and HER catalyst for water splitting.
View Article and Find Full Text PDFDeveloping efficient photocatalysts that perform multi electron redox reactions is critical to achieving solar energy conversion. One can reach this goal by developing systems which mimic natural photosynthesis and exploit strategies such as proton-coupled electron transfer (PCET) to achieve photochemical charge accumulation. We report herein a heteroleptic Cu(i)bis(phenanthroline) complex, Cu-AnQ, featuring a fused phenazine-anthraquinone moiety that photochemically accumulates two electrons in the anthraquinone unit PCET.
View Article and Find Full Text PDFThe energies of the frontier molecular orbitals determine the optoelectronic properties in organic films, which are crucial for their application, and strongly depend on the morphology and supramolecular structure. The impact of the latter two properties on the electronic energy levels relies primarily on nearest-neighbor interactions, which are difficult to study due to their nanoscale nature and heterogeneity. Here, an automated method is presented for fabricating thin films with a tailored ratio of surface to bulk sites and a controlled extension of domain edges, both of which are used to control nearest-neighbor interactions.
View Article and Find Full Text PDF