Publications by authors named "K Giannokostas"

We study the steady hemodynamics in physiological elastic microvessels proposing an advanced fluid-structure interaction model. The arteriolar tissue is modeled as a two-layer fiber-reinforced hyperelastic material representing its Media and Adventitia layers. The constitutive model employed (Holzapfel et al.

View Article and Find Full Text PDF

The present work focuses on the in-silico investigation of the steady-state blood flow in straight microtubes, incorporating advanced constitutive modeling for human blood and blood plasma. The blood constitutive model accounts for the interplay between thixotropy and elasto-visco-plasticity via a scalar variable that describes the level of the local blood structure at any instance. The constitutive model is enhanced by the non-Newtonian modeling of the plasma phase, which features bulk viscoelasticity.

View Article and Find Full Text PDF

This work focuses on the advanced modeling of the thixotropic nature of blood, coupled with an elasto-visco-plastic formulation by invoking a consistent and validated model for TEVP materials. The proposed model has been verified for the adequate description of the rheological behavior of suspensions, introducing a scalar variable that describes dynamically the level of internal microstructure of rouleaux at any instance, capturing accurately the aggregation and disaggregation mechanisms of the RBCs. Also, a non-linear fitting is adopted for the definition of the model's parameters on limited available experimental data of steady and transient rheometric flows of blood samples.

View Article and Find Full Text PDF