Limited proteolysis coupled to mass spectrometry (LiP-MS) has emerged as a powerful proteomic tool for studying protein conformations. Since its introduction in 2014, LiP-MS has expanded its scope to explore complex biological systems and shed light on disease mechanisms, and has been used for protein drug research. This review discusses the evolution of the technique, recent technical advances, including enhanced protocols and integration of machine learning, and diverse applications across various experimental models.
View Article and Find Full Text PDFPlants continuously respond to changing environmental conditions to prevent damage and maintain optimal performance. To regulate gas exchange with the environment and to control abiotic stress relief, plants have pores in their leaf epidermis, called stomata. Multiple environmental signals affect the opening and closing of these stomata.
View Article and Find Full Text PDFTo survive extreme desiccation, seeds enter a period of quiescence that can last millennia. Seed quiescence involves the accumulation of protective storage proteins and lipids through unknown adjustments in protein homeostasis (proteostasis). Here, we show that mutation of all six type-II metacaspase (MCA-II) proteases in Arabidopsis thaliana disturbs proteostasis in seeds.
View Article and Find Full Text PDF