Publications by authors named "K Geethika"

A nucleoid protein Cren7 compacts DNA, contributing to the living of Crenarchaeum in high temperature environment. In this study, we investigated the dynamic behavior of Cren7 on DNA and its functional relation using single-molecule fluorescence microscopy. We found two mobility modes of Cren7, sliding along DNA and pausing on it, and the rapid dissociation kinetics from DNA.

View Article and Find Full Text PDF

Proteins from Crenarchaeal organisms exhibit remarkable thermal stability. The aromatic amino acids in Cren7, a Crenarchaeal protein, regulate protein stability and further modulate DNA binding and its compaction. Specific aromatic amino acids were mutated, and using spectroscopic and theoretical approaches, we have examined the effect of the mutation on the structure, DNA binding affinity, and DNA bending ability of Cren7.

View Article and Find Full Text PDF

The molecular association of proteins with nucleic acids leading to the formation of macromolecular complexes is a crucial step in several biological processes. Stabilization of these complexes involves electrostatic interactions between ion pairs (salt bridges) of nucleic acid phosphates and protein side chains. The crenarchaeal DNA binding protein, Cren7 plays a key role in the regulation of chromosomal structure and gene expression in eukaryotic extremophiles.

View Article and Find Full Text PDF

Archaea have histone homologues and chromatin proteins to organize their DNA into a compact form. This allows them to survive in extreme climates. Cren7 is one such chromatin protein conserved in Crenarchaeota.

View Article and Find Full Text PDF

Heat shock proteins (Hsps) stabilize the newly synthesized polypeptide chains preventing them from aggregation. They contribute to systemic response under stress and thus behave as signaling molecules. Hsp70 has been detected on the surface of stressed cells.

View Article and Find Full Text PDF