The results of relativistic calculations of nuclear magnetic resonance shielding tensors (σ) for the thallium monocation (Tl+), thallium hydride (TlH), and thallium halides (TlF, TlCl, TlBr, TlI, and TlAt) are presented as obtained within a four-component polarization propagator formalism and a two-component linear response approach within the zeroth-order regular approximation. In addition to a detailed analysis of relativistic effects performed in this work, some quantum electrodynamical (QED) effects on those nuclear magnetic resonance shieldings and other small contributions are estimated. A strong dependence of σ(Tl) on the bonding partner is found, together with a very weak dependence of QED effects with them.
View Article and Find Full Text PDFMolecules containing short-lived, radioactive nuclei are uniquely positioned to enable a wide range of scientific discoveries in the areas of fundamental symmetries, astrophysics, nuclear structure, and chemistry. Recent advances in the ability to create, cool, and control complex molecules down to the quantum level, along with recent and upcoming advances in radioactive species production at several facilities around the world, create a compelling opportunity to coordinate and combine these efforts to bring precision measurement and control to molecules containing extreme nuclei. In this manuscript, we review the scientific case for studying radioactive molecules, discuss recent atomic, molecular, nuclear, astrophysical, and chemical advances which provide the foundation for their study, describe the facilities where these species are and will be produced, and provide an outlook for the future of this nascent field.
View Article and Find Full Text PDFAn analytic gradient approach for the computation of derivatives of parity-violating (PV) potentials with respect to displacements of the nuclei in chiral molecules is described and implemented within a quasirelativistic mean-field framework. Calculated PV potential gradients are utilized for estimating PV frequency splittings between enantiomers in rotational and vibrational spectra of four chiral polyhalomethanes, i.e.
View Article and Find Full Text PDFThe indirect spin-spin coupling tensor, J, between mercury nuclei in systems containing this element can be of the order of a few kHz and one of the largest measured. We analyzed the physics behind the electronic mechanisms that contribute to the one- and two-bond couplings J (n = 1, 2). For doing so, we performed calculations for J-couplings in the ionized X and X linear molecules (X = Zn, Cd, Hg) within polarization propagator theory using the random phase approximation and the pure zeroth-order approximation with Dirac-Hartree-Fock and Dirac-Kohn-Sham orbitals, both at four-component and zeroth-order regular approximation levels.
View Article and Find Full Text PDFIsotope shifts of ^{223-226,228}Ra^{19}F were measured for different vibrational levels in the electronic transition A^{2}Π_{1/2}←X^{2}Σ^{+}. The observed isotope shifts demonstrate the particularly high sensitivity of radium monofluoride to nuclear size effects, offering a stringent test of models describing the electronic density within the radium nucleus. Ab initio quantum chemical calculations are in excellent agreement with experimental observations.
View Article and Find Full Text PDF