It was established that adaptation to chronic continuous normobaric hypoxia (CCNH) increases cardiac tolerance to ischemia and reperfusion. It was performed coronary artery occlusion (20 min) and reperfusion (3 h) in Wistar rats. CCNH promoted a decrease in the infarct size/area at risk ratio in 2-fold.
View Article and Find Full Text PDFAntioxid Redox Signal
September 2018
Significance: Mitochondria are the energetic, metabolic, redox, and information signaling centers of the cell. Substrate pressure, mitochondrial network dynamics, and cristae morphology state are integrated by the protonmotive force Δp or its potential component, ΔΨ, which are attenuated by proton backflux into the matrix, termed uncoupling. The mitochondrial uncoupling proteins (UCP1-5) play an eminent role in the regulation of each of the mentioned aspects, being involved in numerous physiological events including redox signaling.
View Article and Find Full Text PDFUnderstanding the complex involvement of mitochondrial biology in disease development often requires the acquisition, analysis, and integration of large-scale molecular and phenotypic data. An increasing number of bioinformatics tools are currently employed to aid in mitochondrial investigations, most notably in predicting or corroborating the spatial and temporal dynamics of mitochondrial molecules, in retrieving structural data of mitochondrial components, and in aggregating as well as transforming mitochondrial centric biomedical knowledge. With the increasing prevalence of complex Big Data from omics experiments and clinical cohorts, informatics tools have become indispensable in our quest to understand mitochondrial physiology and pathology.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
October 2013
Mitochondria are the major effectors of cardioprotection by procedures that open the mitochondrial ATP-sensitive potassium channel (mitoKATP), including ischemic and pharmacological preconditioning. MitoKATP opening leads to increased reactive oxygen species (ROS), which then activate a mitoKATP-associated PKCε, which phosphorylates mitoKATP and leaves it in a persistent open state (Costa AD, Garlid KD. Am J Physiol Heart Circ Physiol 295, H874-H882, 2008).
View Article and Find Full Text PDFRationale: Activation of the mitochondrial ATP-sensitive potassium channel (mitoK(ATP)) has been implicated in the mechanism of cardiac ischemic preconditioning, yet its molecular composition is unknown.
Objective: To use an unbiased proteomic analysis of the mitochondrial inner membrane to identify the mitochondrial K(+) channel underlying mitoK(ATP).
Methods And Results: Mass spectrometric analysis was used to identify KCNJ1(ROMK) in purified bovine heart mitochondrial inner membrane and ROMK mRNA was confirmed to be present in neonatal rat ventricular myocytes and adult hearts.