Publications by authors named "K Garlaschelli"

Cholesterol homeostasis has a pivotal function in regulating immune cells. Here we show that apolipoprotein E (apoE) deficiency leads to the accumulation of cholesterol in the cell membrane of dendritic cells (DC), resulting in enhanced MHC-II-dependent antigen presentation and CD4 T-cell activation. Results from WT and apoE KO bone marrow chimera suggest that apoE from cells of hematopoietic origin has immunomodulatory functions, regardless of the onset of hypercholesterolemia.

View Article and Find Full Text PDF

Mitochondria are the energy-generating hubs of the cell. In spite of considerable advances, our understanding of the factors that regulate the molecular circuits that govern mitochondrial function remains incomplete. Using a genome-wide functional screen, we identify the poorly characterized protein Zinc finger CCCH-type containing 10 (Zc3h10) as regulator of mitochondrial physiology.

View Article and Find Full Text PDF

Background And Aim: Patients with Systemic Lupus Erythematosus (SLE) present increased cardiovascular mortality compared to the general population. Few studies have assessed the long-term development and progression of carotid atherosclerotic plaque in SLE patients. Our aim was to investigate the association of clinical and laboratory markers of disease activity and classical cardiovascular risk factors (CVRF) with carotid atherosclerosis development in SLE patients in a prospective 5-year study.

View Article and Find Full Text PDF

Aims: Atherosclerosis is an inflammatory disease wherein cholesterol-loaded macrophages play a major role. MicroRNAs and microparticles propagate inflammatory pathways and are involved in cardiovascular disease. We aimed to screen and validate circulating microRNAs correlated with atherosclerosis development in humans, and to dissect the molecular mechanisms associated with atherogenesis using in vitro and in vivo approaches.

View Article and Find Full Text PDF

Background: Familial hypercholesterolemia (FH) is an autosomal dominant disease characterized by elevated plasma levels of LDL-cholesterol that confers an increased risk of premature atherosclerotic cardiovascular disease. Early identification and treatment of FH patients can improve prognosis and reduce the burden of cardiovascular mortality. Aim of this study was to perform the mutational analysis of FH patients identified through a collaboration of 20 Lipid Clinics in Italy (LIPIGEN Study).

View Article and Find Full Text PDF