Publications by authors named "K G Pradeep"

Various finite element (FE) studies reported the biomechanical effects of fusion surgeries in the lumbar spine. However, a comparative study on Open laminectomy plus Posterolateral Fusion (OL-PLF) and Open Laminectomy plus Transforaminal Lumbar Interbody Fusion (OL-TLIF) for fusing an L4-L5 segment has not been reported in the literature. The present comparative FE study evaluates the biomechanical variations in an L4-L5 segment fused using OL-PLF and OL-TLIF surgical approaches.

View Article and Find Full Text PDF

Several finite element (FE) studies reported performances of various lumbar fusion surgical approaches. However, comparative studies on the performance of Open Laminectomy plus Posterolateral Fusion (OL-PLF) and Open Laminectomy plus Transforaminal Interbody Fusion (OL-TLIF) surgical approaches are rare. In the current FE study, the variation in ranges of motions (ROM), stress-strain distributions in an implanted functional spinal unit (FSU) and caudal adjacent soft structures between OL-PLF and OL-TLIF virtual models were investigated.

View Article and Find Full Text PDF

For predicting the biomechanical effects of the fusion procedure, finite element (FE) analysis is widely used as a preclinical tool. Although several FE studies examined the efficacies of various fusion surgical techniques, comparative studies on Open and minimally invasive (MIS) transforaminal lumbar interbody fusion (TLIF) procedures incorporating a follower coordinate system have not been investigated yet. The current FE study evaluates the ranges of motion (ROM) and load distributions of Open-TLIF and MIS-TLIF implanted models, under physiological loading such as compression, flexion, extension and lateral bending.

View Article and Find Full Text PDF

Background: Attitude, Ethics, and Communication (AETCOM) module 2.3 is effective in improving the communication skills of medical students, which in turn will prevent malpractices and litigations against doctors. Module 2.

View Article and Find Full Text PDF

Osteoporosis is a word used to describe a condition in which bone density has been diminished as a result of inadequate bone tissue development to counteract the elimination of old bone tissue. Osteoporosis diagnosis is made possible by the use of medical imaging technologies such as CT scans, dual X-ray, and X-ray images. In practice, there are various osteoporosis diagnostic methods that may be performed with a single imaging modality to aid in the diagnosis of the disease.

View Article and Find Full Text PDF