The structure-activity relationship (SAR) for the newly discovered oxadiazole class of antibiotics is described with evaluation of 120 derivatives of the lead structure. This class of antibiotics was discovered by in silico docking and scoring against the crystal structure of a penicillin-binding protein. They impair cell-wall biosynthesis and exhibit activities against the Gram-positive bacterium Staphylococcus aureus, including methicillin-resistant S.
View Article and Find Full Text PDFInfections caused by hard-to-treat methicillin-resistant Staphylococcus aureus (MRSA) are a serious global public-health concern, as MRSA has become broadly resistant to many classes of antibiotics. We disclose herein the discovery of a new class of non-β-lactam antibiotics, the oxadiazoles, which inhibit penicillin-binding protein 2a (PBP2a) of MRSA. The oxadiazoles show bactericidal activity against vancomycin- and linezolid-resistant MRSA and other Gram-positive bacterial strains, in vivo efficacy in a mouse model of infection, and have 100% oral bioavailability.
View Article and Find Full Text PDFBrain metastasis occurs in 20-40% of cancer patients. Treatment is mostly palliative, and the inability of most drugs to penetrate the brain presents one of the greatest challenges in the development of therapeutics for brain metastasis. Matrix metalloproteinase-2 (MMP-2) plays important roles in invasion and vascularization of the central nervous system and represents a potential target for treatment of brain metastasis.
View Article and Find Full Text PDFMALDI-TOF MS has potential as a valuable technique in DNA mapping studies and may well be complementary to other approaches to DNA analysis such as gel electrophoresis and sequencing. This study used 2,6-dihydroxyacetophenone (DHAP) mixed with diammonium hydrogen citrate (DAHC) as the matrix. In addition, recent technical advances such as time lag focussing (TLF) and better selection of matrices (such as 3-hydroxypicolinic acid (3 HPA) and picolinic acid (PA)) extended the range of DNA fragments that can be studied by this approach.
View Article and Find Full Text PDFA new interface procedure has been developed that allows, for the first time, the high-efficiency analysis of synthetic oligonucleotides up to 75 bases by reversed-phase HPLC and on-line electrospray ionization mass spectrometry. For oligonucleotides up to 30 bases in length, single-base resolution can be obtained with low levels of cation adduct formation in the negative ion electrospray mass spectra. A key part of the method uses 1,1,1,3,3,3-hexafluoro-2-propanol as an additive to the HPLC mobile phase, adjusted to pH 7.
View Article and Find Full Text PDF