Objective: The need for safe and reliable mechanical circulatory support (MCS) for smaller children with severe heart failure (HF) is well defined. More specifically, in pediatric patients with advanced congenital HF, there is no implantable total artificial heart (TAH) device available for small patients. Herein, we report the development of the infant continuous-flow total artificial heart (I-CFTAH), a fully implantable in infants and newborns.
View Article and Find Full Text PDFObjective: A less-invasive left atrial assist device (LAADx) is a novel and implantable, extracardiac blood pump concept, intended for the treatment of diastolic heart failure, represented by heart failure with preserved ejection fraction.
Methods: A mixed-flow pump was used as the working LAADx model. Its performance was evaluated at 3 speeds, using an in vitro pulsatile mock circulatory loop, with a pneumatic pump that can simulate diastolic heart failure conditions by adjusting the diastolic drive pressure.
Background: The left atrial assist device (LAAD) is a novel continuous-flow pump designed to treat patients with heart failure with preserved ejection fraction, a growing type of heart failure, but with limited device-treatment options. The LAAD is implanted in the mitral plane and pumps blood from the left atrium into the left ventricle. The purpose of this study was to refine the initial design of the LAAD, using results from computational fluid dynamics (CFD) analyses to inform changes that could improve hydraulic performance and flow patterns within the LAAD.
View Article and Find Full Text PDFNucleotide sequences recognized and bound by DNA-binding proteins (DBPs) are critical to controlling and maintaining gene expression, replication, chromosome segregation, cell division, and nucleoid structure in bacterial cells. Therefore, determination of the binding sequences of DBPs is important not only to study DBP recognition mechanisms but also to understand the fundamentals of cell homeostasis. While ChIP-seq analysis appears to be an effective way to determine DBP binding sites on the genome, the resolution is sometimes not sufficient to identify the sites precisely.
View Article and Find Full Text PDF