Publications by authors named "K Friedbichler"

Androgen deprivation therapy and second-generation androgen receptor signaling inhibitors such as enzalutamide are standard treatments for advanced/metastatic prostate cancer. Unfortunately, most men develop resistance and relapse; signaling via insulin-like growth factor (IGF) has been implicated in castration-resistant prostate cancer. We evaluated the antitumor activity of xentuzumab (IGF ligand-neutralizing antibody), alone and in combination with enzalutamide, in prostate cancer cell lines (VCaP, DuCaP, MDA PCa 2b, LNCaP, and PC-3) using established assays, and , using LuCaP 96CR, a prostate cancer patient-derived xenograft (PDX) model.

View Article and Find Full Text PDF

Chronic liver diseases and the development of hepatocellular carcinoma are closely linked and pose a major medical challenge as treatment options are limited. Animal studies have shown that genetic deletion of the signal transducer and activator of transcription (STAT) 5 in liver is associated with higher susceptibility to fatty liver disease, fibrosis and cancer, indicating a protective role of hepatic STAT5 in mouse models of chronic liver disease. To investigate the role of STAT5 in the etiology of liver cancer in more detail, we applied the chemical carcinogen diethylnitrosamine (DEN) to mice harboring a hepatocyte-specific deletion of Stat5 (S5KO).

View Article and Find Full Text PDF

Genetic deletion of the tyrosine kinase JAK2 or the downstream transcription factor STAT5 in liver impairs growth hormone (GH) signalling and thereby promotes fatty liver disease. Hepatic STAT5 deficiency accelerates liver tumourigenesis in presence of high GH levels. To determine whether the upstream kinase JAK2 exerts similar functions, we crossed mice harbouring a hepatocyte-specific deletion of JAK2 (JAK2) to GH transgenic mice (GH) and compared them to GHSTAT5 mice.

View Article and Find Full Text PDF

Insulin-like growth factor (IGF) signaling is thought to play a role in the development and progression of multiple cancer types. To date, therapeutic strategies aimed at disrupting IGF signaling have largely focused on antibodies that target the IGF-I receptor (IGF-IR). Here, we describe the pharmacologic profile of BI 836845, a fully human monoclonal antibody that utilizes an alternative approach to IGF signaling inhibition by selectively neutralizing the bioactivity of IGF ligands.

View Article and Find Full Text PDF