Objectives: Serum free light chain (sFLC) measurements have inherent analytical limitations impacting sFLC clinical interpretation. We evaluated analytical and diagnostic performance of three polyclonal sFLC assays on four analytical platforms.
Methods: sFLC concentration was measured using Diazyme FLC assays (Diazyme) on cobas c501/c503 analyzer (Roche); Freelite assays (The Binding Site) on Optilite analyzer (The Binding Site) and cobas c501 analyzer and Sebia FLC ELISA assays (Sebia) on AP22 ELITE analyzer (DAS).
To this day, multiple myeloma remains an incurable cancer. For many patients, recurrence is unavoidably a result of lacking treatment options in the minimal residual disease stage. This is due to residual and treatment-resistant myeloma cells that can cause disease relapse.
View Article and Find Full Text PDFDetection of minimal residual disease (MRD) to guide therapy has been a standard practice in treatment of childhood acute lymphoblastic leukemia (ALL) for decades. In multiple myeloma (MM), a clear correlation is found between absence of MRD and longer survival. Quantitative allele-specific oligonucleotide (qASO)-PCR is the standard molecular method for MRD detection in these hematologic malignant tumors.
View Article and Find Full Text PDFMultiple myeloma (MM) is well-known for the development of drug resistance, leading to relapse. Therefore, finding novel treatment strategies remains necessary. By performing a lipidomics assay on MM patient plasma, we aimed to identify new targets.
View Article and Find Full Text PDF