Publications by authors named "K Fichter"

CRISPR-Cas technologies have the potential to revolutionize genetic medicine. However, work is still needed to make this technology clinically efficient for gene correction. A barrier to making precise genetic edits in the human genome is controlling how CRISPR-Cas-induced DNA breaks are repaired by the cell.

View Article and Find Full Text PDF

Duplication or deficiency of the X-linked MECP2 gene reliably produces profound neurodevelopmental impairment. MECP2 mutations are almost universally responsible for Rett syndrome (RTT), and particular mutations and cellular mosaicism of MECP2 may underlie the spectrum of RTT symptomatic severity. No clinically approved treatments for RTT are currently available, but human pluripotent stem cell technology offers a platform to identify neuropathology and test candidate therapeutics.

View Article and Find Full Text PDF

Fluorescent nanocrystals, specifically quantum dots, have been a useful tool for many biomedical applications. For successful use in biological systems, quantum dots should be highly fluorescent and small/monodisperse in size. While commonly used cadmium-based quantum dots possess these qualities, they are potentially toxic due to the possible release of Cd(2+) ions through nanoparticle degradation.

View Article and Find Full Text PDF

Cellular signaling is the fundamental process through which cells communicate with each other and respond to their environment. Regulation of this cellular signaling is crucial for healthy cellular function. Malfunctions in signaling are the cause for many diseases and disorders and therefore are under heavy investigation.

View Article and Find Full Text PDF

Materials that self-assemble with nucleic acids into nanocomplexes (e.g. polyplexes) are widely used in many fundamental biological and biomedical experiments.

View Article and Find Full Text PDF