Publications by authors named "K Fechtel"

Next-generation sequencing and genome-wide association studies represent powerful tools to identify genetic variants that confer disease risk within populations. On their own, however, they cannot provide insight into how these variants contribute to individual risk for diseases that exhibit complex inheritance, or alternatively confer health in a given individual. Even in the case of well-characterized variants that confer a significant disease risk, more healthy individuals carry the variant, with no apparent ill effect, than those who manifest disease.

View Article and Find Full Text PDF

Background: Model organisms have contributed substantially to our understanding of the etiology of human disease as well as having assisted with the development of new treatment modalities. The availability of the human, mouse and, most recently, the rat genome sequences now permit the comprehensive investigation of the rodent orthologs of genes associated with human disease. Here, we investigate whether human disease genes differ significantly from their rodent orthologs with respect to their overall levels of conservation and their rates of evolutionary change.

View Article and Find Full Text PDF

The finished sequence of human chromosome 10 comprises a total of 131,666,441 base pairs. It represents 99.4% of the euchromatic DNA and includes one megabase of heterochromatic sequence within the pericentromeric region of the short and long arm of the chromosome.

View Article and Find Full Text PDF

The laboratory rat (Rattus norvegicus) is an indispensable tool in experimental medicine and drug development, having made inestimable contributions to human health. We report here the genome sequence of the Brown Norway (BN) rat strain. The sequence represents a high-quality 'draft' covering over 90% of the genome.

View Article and Find Full Text PDF

Cell-surface proteins are attractive targets for the development of novel antifungals as they are more accessible to drugs than are intracellular targets. By using a computational biology approach, we identified 180 potential cell-surface proteins in Candida albicans, including the known cell-surface adhesin Als1 and other cell-surface antigens, such as Pra1 and Csa1. Six proteins (named Csf1-6 for cell-surface factors) were selected for further biological characterization.

View Article and Find Full Text PDF