Assessing research activity is an important step for planning future initiatives oriented toward filling the remaining gaps in a field. Therefore, the objective of the current study was to review recently published research on pulmonary toxicity caused by nanomaterials. However, here, instead of reviewing possible toxic effects and discussing their mode of action, the goal was to establish trends considering for example examined so far nanomaterials or used testing strategies.
View Article and Find Full Text PDFSingle-strand breaks (SSBs) induced via electron attachment were previously observed in dry DNA under ultrahigh vacuum (UHV), while hydrated electrons were found not able to induce this DNA damage in an aqueous solution. To explain these findings, crossed electron-molecular beam (CEMB) and anion photoelectron spectroscopy (aPES) experiments coupled to density functional theory (DFT) modeling were used to demonstrate the fundamental importance of proton transfer (PT) in radical anions formed via electron attachment. Three molecular systems were investigated: 5'-monophosphate of 2'-deoxycytidine (dCMPH), where PT in the electron adduct is feasible, and two ethylated derivatives, 5'-diethylphosphate and 3',5'-tetraethyldiphosphate of 2'-deoxycytidine, where PT is blocked due to substitution of labile protons with the ethyl residues.
View Article and Find Full Text PDFPrevious density functional theory (DFT) studies on 6-brominated pyrimidine nucleosides suggest that 6-iodo-2'-deoxyuridine (6IdU) should act as a better radiosensitizer than its 5-iodosubstituted 2'-deoxyuridine analogue. In this work, we show that 6IdU is unstable in an aqueous solution. Indeed, a complete disappearance of the 6IdU signal was observed during its isolation by reversed-phase high-performance liquid chromatography (RP-HPLC).
View Article and Find Full Text PDFThe incorporation of modified uracil derivatives into DNA leads to the formation of radical species that induce DNA damage. Molecules of this class have been suggested as radiosensitizers and are still under investigation. In this study, we present the results of dissociative electron attachment to uracil-5-yl -(,-dimethylsulfamate) in the gas phase.
View Article and Find Full Text PDFHypoxia-a hallmark of solid tumors-dramatically impairs radiotherapy, one of the most common anticancer modalities. The adverse effect of the low-oxygen state can be eliminated by the concomitant use of a hypoxic cell radiosensitizer. In the present paper, we show that 5-(-trifluoromethylcarboxy) aminouracil (CFCONHU) can be considered as an effective radiosensitizer of DNA damage, working under hypoxia.
View Article and Find Full Text PDF