Publications by authors named "K F Eckerman"

This paper presents DEPDOSE, an open-source computer application that combines the KDEP respiratory tract deposition fractions for inhaled aerosols with DC_PAK committed equivalent dose coefficients for a unit deposition in each region of the respiratory tract. DEPDOSE allows the user to rapidly produce tables of dose coefficients for workers and members of the public inhaling precisely defined, user-specified aerosols using the ICRP Publication 60 methodology. Combined with a plume dispersion modeling system, such as the Quick Urban & Industrial Complex (QUIC) Dispersion Modeling System, this makes it possible to predict radiation doses downstream from an accidental or intentional release of radioactive materials.

View Article and Find Full Text PDF

Tennessee Eastman Corporation workers were exposed to uranium dust resulting in high-linear energy transfer (LET) irradiation to lung tissue. In this work, radiation lung doses were reconstructed for 26 650 men and women working at the plant between 1942 and 1947. Site air monitoring data of uranium concentrations and payroll records were used to determine the daily inhaled activities and annualized lung doses.

View Article and Find Full Text PDF

Contaminated sediments originating from dredging activities in a nuclear power plant site were placed in a pond, which has to be taken into consideration during the future decommissioning process. The sediments have to be handled to free release the site. The radionuclides Co-60 and Cs-137 were identified and the activity concentrations (Bq/kg) were quantified in the range of 10-6000 and 5-50 Bq kg-1, respectively.

View Article and Find Full Text PDF

The US National Council on Radiation Protection and Measurements (NCRP) convened Scientific Committee 6-12 (SC 6-12) to examine methods for improving dose estimates for brain tissue for internally deposited radionuclides, with emphasis on alpha emitters. This Memorandum summarises the main findings of SC 6-12 described in the recently published NCRP Commentary No. 31, 'Development of Kinetic and Anatomical Models for Brain Dosimetry for Internally Deposited Radionuclides'.

View Article and Find Full Text PDF