As a first step in understanding the differential expression of the plastid-encoded photosystem II (PSII) genes in mesophyll and bundle-sheath cells, we have used RNA blotting techniques to investigate the transcript patterns of these genes in three NADP-malic enzymetype C4 species: Zea mays L., Sorghum bicolor (L.) Moench and Pennisetum americanum (L.
View Article and Find Full Text PDFWe have investigated the photosystem-II organization in differentiating-bundle-sheath cells of the three malate dehydrogenase (oxaloacetate decarboxylating) (NADP+)-type C4 species maize, Sorghum and Pennisetum. Using a set of nine different antisera raised against individual subunits of photosystem-II, we demonstrate that photosystem-II components constitute a substantial part of the thylakoid membranes of young bundle-sheath chloroplasts. The abundance of subunits of the photosystem-II core, i.
View Article and Find Full Text PDFThe levels of total chlorophyll (Chl), total carotenoids, light-harvesting Chl a/b apoprotein of photosystem II (LHCPII), and light-harvesting Chl a/b apoprotein (LHCP) mRNA were examined in the CD3 chlorina mutant wheat (Triticum aestivum, L.) after 18 hours greening at either a low (3 micromoles of photons per square meter per second) or moderate (200 micromoles of photons per square meter per second) irradiance. The Chl b and LHCPII deficient mutant wheat accumulated significantly greater levels of Chl and LHCPII when greened under low irradiance than when greened under a moderate irradiance level.
View Article and Find Full Text PDFEffects of red and blue light at irradiances from 1.6 to 28.3 micromolar per square meter per second on chloroplast pigments, light-harvesting pigment-proteins associated with photosystem II, and the corresponding mRNA were evaluated in maize (Zea mays L.
View Article and Find Full Text PDFCorn was grown under greenhouse and controlled light quality conditions incluing full spectrum, red (R), and far-red (FR) sources. Young leaf samples were analyzed for pigments, pigment-proteins, membrane polypeptides, and ultrastructure. Chloroplast development in full spectrum white light was similar to that found in R but different from that found in FR plus low R.
View Article and Find Full Text PDF