Asymmetrical flow field-flow fractionation (AF4) is a separation method based on hydrodynamic size of the sample components. It can separate a broad size range of components (~10 to 10 Da; particle diameter from ~1 nm to ~1 μm), but is especially well suited for high molecular weight samples such as virus-sized particles and extracellular vesicles. Separation takes place in an open channel where the flows control sample elution.
View Article and Find Full Text PDFRNA molecules provide promising new possibilities for the prevention and treatment of viral infections and diseases. The rapid development of RNA biology and medicine requires advanced methods for the purification of RNA molecules, which allow fast and efficient RNA processing, preferably under non-denaturing conditions. Asymmetrical flow field-flow fractionation (AF4) enables gentle separation and purification of macromolecules based on their diffusion coefficients.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
March 2022
An efficient chromatography-based virus purification method has been developed and validated for the non-pathogenic infectious virus PRD1. Compared to the conventional method that consists of relatively time-consuming and labour-intensive precipitation and density gradient ultracentrifugation steps, the method developed here is performed in a single flow using tandem-coupled anion exchange and size exclusion chromatography (AIEX-SEC) columns. This inline approach helps to minimize the loss of virus in the process and streamlines time consumption, since no physical transfer of the sample is required between purification steps.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
September 2021
Asymmetrical flow field-flow (AF4) fractionation aims in separation of sample components to yield elution of homogenous fractions identified as well-defined peaks in the chromatograms. Separation that occurs in matrix-free open channel potentiates high recovery that can be close to 100%. However, sample properties and separation conditions may induce carryover of sample components during AF4 analysis and in sample sequences.
View Article and Find Full Text PDFAsymmetrical flow field-flow fractionation (AF4) separates sample components based on their sizes in the absence of a stationary phase. It is well suited for high molecular weight samples such as virus-sized particles. The AF4 experiment can potentially separate molecules within a broad size range (~10-10 Da; particle diameter from 2 nm to 0.
View Article and Find Full Text PDF