Publications by authors named "K Eckermann"

Animal behavior is guided by the brain. Therefore, adaptations of brain structure and function are essential for animal survival, and each species differs in such adaptations. The brain of one individual may even differ between life stages, for instance, as adaptation to the divergent needs of larval and adult life of holometabolous insects.

View Article and Find Full Text PDF

With CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated) scientists working with Tribolium castaneum can now generate transgenic lines with site-specific insertions at their region of interest. We present two methods to generate in vivo imaging lines suitable for marking subsets of neurons with fluorescent proteins. The first method relies on homologous recombination and uses a 2A peptide to create a bicistronic mRNA.

View Article and Find Full Text PDF

The use of a site-specific homing-based gene drive for insect pest control has long been discussed, but the easy design of such systems has become possible only with the recent establishment of CRISPR/Cas9 technology. In this respect, novel targets for insect pest management are provided by new discoveries regarding sex determination. Here, we present a model for a suppression gene drive designed to cause an all-male population collapse in an agricultural pest insect.

View Article and Find Full Text PDF

Even in times of advanced site-specific genome editing tools, the improvement of DNA transposases is still on high demand in the field of transgenesis: especially in emerging model systems where evaluated integrase landing sites have not yet been created and more importantly in non-model organisms such as agricultural pests and disease vectors, in which reliable sequence information and genome annotations are still pending. In fact, random insertional mutagenesis is essential to identify new genomic locations that are not influenced by position effects and thus can serve as future stable transgene integration sites. In this respect, a hyperactive version of the most widely used piggyBac transposase (PBase) has been engineered.

View Article and Find Full Text PDF