Publications by authors named "K E Zhurenkov"

Conducting polymer hydrogels (CPHs) are composite polymeric materials with unique properties that combine the electrical capabilities of conducting polymers (CPs) with the excellent mechanical properties and biocompatibility of traditional hydrogels. This review aims to highlight how the unique properties CPHs have from combining their two constituent materials are utilized within the biomedical field. First, the synthesis approaches and applications of non-CPH conductive hydrogels are discussed briefly, contrasting CPH-based systems.

View Article and Find Full Text PDF

The functioning of the human cornea heavily relies on the maintenance of its extracellular matrix (ECM) mechanical properties. Within this context, corneal stromal fibroblasts (CSFs) are essential, as they are responsible for remodeling the corneal ECM. In this study, we used a decellularized human amniotic membrane (dHAM) and a custom fibrillar collagen film (FCF) to explore the effects of fibrillar materials on human CSFs.

View Article and Find Full Text PDF

Atomic force microscopy (AFM) is a valuable tool for determining the Young's modulus of a wide range of materials. However, it faces challenges, particularly when assessing adhesive materials like soft poly(-isopropylacrylamide) (pNIPAM) hydrogels. This study focuses on enhancing the consistency and reliability of AFM measurements by functionally modifying AFM spherical tip cantilevers to address substrate adhesion issues with these hydrogels.

View Article and Find Full Text PDF

Ocular surface reconstruction is essential for treating corneal epithelial defects and vision recovery. Stem cell-based therapy demonstrates promising results but requires further research to elucidate stem cell survival, growth, and differentiation after transplantation in vivo. This study examined the corneal reconstruction promoted by EGFP-labeled limbal mesenchymal stem cells (L-MSCs-EGFP) and their fate after transplantation.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to characterize labial mucosa stem cells (LMSCs) and to investigate their potential for corneal epithelial reconstruction in a rabbit model of total limbal stem cell deficiency (LSCD).

Methods: Rabbit LMSCs (rLMSCs) and human (hLMSCs) LMSCs were derived from labial mucosa and characterized in terms of their proliferation activity by the evaluation of proliferation index (PI) and colony forming efficiency (CFE), cell senescence, and differentiation abilities. The expression of various limbus-specific, stem cell-specific, and epithelial markers was assessed via immunocytochemistry.

View Article and Find Full Text PDF