The Landau level spectroscopy technique has been used to explore the electronic structure of the valence band in a series of p-type HgTe/HgCdTe quantum wells with both normal and inverted ordering of bands. We find that the standard axial-symmetric 4-band Kane model, which is nowadays widely applied in physics of HgTe-based topological materials, does not fully account for the complex magneto-optical response observed in our experiments-notably, for the unexpected avoided crossings of excitations and for the appearance of transitions that are electric-dipole forbidden within this model. Nevertheless, reasonable agreement with experiments is achieved when the standard model is expanded to include effects of bulk and interface inversion asymmetries.
View Article and Find Full Text PDF: Cyclotron resonance study of HgTe/CdTe-based quantum wells with both inverted and normal band structures in quantizing magnetic fields was performed. In semimetallic HgTe quantum wells with inverted band structure, a hole cyclotron resonance line was observed for the first time. In the samples with normal band structure, interband transitions were observed with wide line width due to quantum well width fluctuations.
View Article and Find Full Text PDFWe have achieved the ability to synthesize thousands of unique, long oligonucleotides (150mers) in fmol amounts using parallel synthesis of DNA on microarrays. The sequence accuracy of the oligonucleotides in such large-scale syntheses has been limited by the yields and side reactions of the DNA synthesis process used. While there has been significant demand for libraries of long oligos (150mer and more), the yields in conventional DNA synthesis and the associated side reactions have previously limited the availability of oligonucleotide pools to lengths <100 nt.
View Article and Find Full Text PDFWe have previously described decreased immunostaining of nidogen-1/entactin; laminin chains alpha1, alpha5, beta1,gamma1; and epithelial integrin alpha3beta1 in human diabetic retinopathy (DR) corneas. Here, using 142 human corneas, we tested whether these alterations might be caused by decreased gene expression levels or increased degradation. By semiquantitative reverse transcription-polymerase chain reaction, gene expression levels of the alpha1, alpha5, and beta1 laminin chains; nidogen-1/entactin; integrin alpha3 and beta1 chains in diabetic and DR corneal epithelium were similar to normal.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
December 1999
Purpose: To validate the use of polymerase chain reaction (PCR)-amplified full-length cDNA as a substitute for mRNA in nucleic acid array and gene expression analysis.
Methods: Total RNA was isolated from age-matched normal autopsy corneas and pseudophakic bullous keratopathy (PBK) corneas. Full-length cDNA was generated and PCR amplified using the Smart cDNA synthesis technology.