Publications by authors named "K E Mochalov"

Modern biomedical research often requires a three-dimensional microscopic analysis of the ultrastructure of biological objects and materials. Conceptual technical and methodological solutions for three-dimensional structure reconstruction are needed to improve the conventional optical, electron, and probe microscopy methods, which to begin with allow one to obtain two-dimensional images and data. This review discusses the principles and potential applications of such techniques as serial section transmission electron microscopy; techniques based on scanning electron microscopy (SEM) (array tomography, focused ion beam SEM, and serial block-face SEM).

View Article and Find Full Text PDF

Nanoscale morphological features of branched processes of glial cells may be of decisive importance for neuron-astrocyte interactions in health and disease. The paper presents the results of a correlation analysis of images of thin processes of astrocytes in nervous tissue of the mouse brain, which were obtained by scanning probe microscopy (SPM) and transmission electron microscopy (TEM) with high spatial resolution. Samples were prepared and imaged using a unique hardware combination of ultramicrotomy and SPM.

View Article and Find Full Text PDF

Developing technologies for efficient targeted drug delivery for oncotherapy requires new methods to analyze the features of micro- and nanoscale distributions of antitumor drugs in cells and tissues. A new approach to three-dimensional analysis of the intracellular distribution of cytostatics was developed using fluorescence scanning optical-probe nanotomography. A correlative analysis of the nanostructure and distribution of injected doxorubicin in MCF-7 human breast adenocarcinoma cells revealed the features of drug penetration and accumulation in the cell.

View Article and Find Full Text PDF

The development of effective biomedical technologies using magnetic nanoparticles (MNPs) for the tasks of oncotherapy and nanodiagnostics requires the development and implementation of new methods for the analysis of micro- and nanoscale distributions of MNPs in the volume of cells and tissues. The paper presents a new approach to three-dimensional analysis of MNP distributions - scanning magnetic force nanotomography as applied to the study of tumor tissues. Correlative reconstruction of MNP distributions and nanostructure features of the studied tissues made it possible to quantitatively estimate the parameters of three-dimensional distributions of composite nanoparticles based on silicon and iron oxide obtained by femtosecond laser ablation and injected intravenously and intratumorally into tumor tissue samples of B16/F1 mouse melanoma.

View Article and Find Full Text PDF

Resonant interaction between excitonic transitions of molecules and localized electromagnetic field allows the formation of hybrid light-matter polaritonic states. This hybridization of the light and the matter states has been shown to significantly alter the intrinsic properties of molecular ensembles placed inside the optical cavity. Here, we have observed strong coupling of excitonic transition in a pair of closely located organic dye molecules demonstrating an efficient donor-to-acceptor resonance energy transfer with the mode of a tuneable open-access cavity.

View Article and Find Full Text PDF