Publications by authors named "K E Mironova"

Objective: To improve the results of treatment of obstructive jaundice by using of oral cholangioscopy.

Material And Methods: There were 321 patients with obstructive jaundice between October 2020 and November 2021. Of these, cholangioscopy (SpyGlass video system) was used in 18 patients.

View Article and Find Full Text PDF

Recently introduced upconversion nanoparticles (UCNPs) have pushed the depth of photodynamic therapy (PDT) treatment to the centimetre range by converting deeply-penetrating near-infrared (NIR) radiation to visible radiation for photoexcitation of PDT drugs. Here we demonstrate that the direct exposure of the cancer tissue to phototoxic ultraviolet radiation generated by NIR-photoexcited UCNPs enabled successful PDT. To this aim, core/shell UCNPs of the formula NaYF:YbTm/NaYF featuring an enhanced band in the ultraviolet UV-A and UV-B spectral bands were rationally designed and synthesised.

View Article and Find Full Text PDF

Riboflavin (Rf) is a vitamin and endogenous photosensitizer capable to generate reactive oxygen species (ROS) under UV-blue irradiation and kill cancer cells, which are characterized by the enhanced uptake of Rf. We confirmed its phototoxicity on human breast adenocarcinoma cells SK-BR-3 preincubated with 30-μM Rf and irradiated with ultraviolet light, and proved that such Rf concentrations (60 μM) are attainable in vivo in tumour site by systemic intravascular injection. In order to extend the Rf photosensitization depth in cancer tissue to 6 mm in depth, we purpose-designed core/shell upconversion nanoparticles (UCNPs, NaYF:Yb:Tm/NaYF) capable to convert 2% of the deeply-penetrating excitation at 975 nm to ultraviolet-blue power.

View Article and Find Full Text PDF

Genetically encoded photosensitizers (PSs), e.g. ROS generating proteins, correspond to a novel class of PSs that are highly desirable for biological and medical applications since they can be used in combination with a variety of genetic engineering manipulations allowing for precise spatio-temporal control of ROS production within living cells and organisms.

View Article and Find Full Text PDF