Background: Adenocarcinoma of the esophagus and stomach demands a deeper molecular understanding to advance treatment strategies and improve patient outcomes. Here, we profiled the genome and transcriptome landscape of these cancers, explored molecular characteristics that are undetectable by other sequencing platforms, and analyzed their potential clinical ramifications.
Methods: Our study employed state-of-the-art integrative analyses of whole genome and transcriptome sequencing on 51 matched tumor and germline samples from 46 patients.
Background: Advanced-stage tube-ovarian cancers (TOC) and uterine cancers (UC) significantly contribute to cancer mortality. While surgery achieves clinical remission in most cases, recurrence often necessitates systemic therapy. Recent molecular phenotype studies have advanced targeted therapies.
View Article and Find Full Text PDFShort-read sequencing is the workhorse of cancer genomics yet is thought to miss many structural variants (SVs), particularly large chromosomal alterations. To characterize missing SVs in short-read whole genomes, we analyzed 'loose ends'-local violations of mass balance between adjacent DNA segments. In the landscape of loose ends across 1,330 high-purity cancer whole genomes, most large (>10-kb) clonal SVs were fully resolved by short reads in the 87% of the human genome where copy number could be reliably measured.
View Article and Find Full Text PDFHomologous recombination (HR) deficiency is associated with DNA rearrangements and cytogenetic aberrations. Paradoxically, the types of DNA rearrangements that are specifically associated with HR-deficient cancers only minimally affect chromosomal structure. Here, to address this apparent contradiction, we combined genome-graph analysis of short-read whole-genome sequencing (WGS) profiles across thousands of tumours with deep linked-read WGS of 46 BRCA1- or BRCA2-mutant breast cancers.
View Article and Find Full Text PDF