Background: Accurate bacteria genome de novo assembly is fundamental to understand the evolution and pathogenesis of new bacteria species. The advent and popularity of Third-Generation Sequencing (TGS) enables assembly of bacteria genomes at an unprecedented speed. However, most current TGS assemblers were specifically designed for human or other species that do not have a circular genome.
View Article and Find Full Text PDFThe near-minimal bacterium Mesoplasma florum is an interesting model for synthetic genomics and systems biology due to its small genome (~ 800 kb), fast growth rate, and lack of pathogenic potential. However, fundamental aspects of its biology remain largely unexplored. Here, we report a broad yet remarkably detailed characterization of M.
View Article and Find Full Text PDFis an important etiologic agent of non-gonococcal urethritis (NGU), known for chronicity and multidrug resistance, in which biofilms may play an integral role. In some bacterial species capable of forming biofilms, extracellular polymeric substances (EPS) composed of poly--acetylglucosamine (PNAG) are a crucial component of the matrix. Monosaccharide analysis of strains revealed high abundance of GlcNAc, suggesting a biofilm-specific EPS.
View Article and Find Full Text PDFBackground: Mycoplasma pneumoniae (Mpn), one of the smallest self-replicating prokaryotes, is known to readily adhere to host cells and to form aggregates in suspension. Having only one cell membrane and no cell wall, mycoplasmas present questions as to optimal aggregate disruption method while minimizing cell death in vitro. We compared conventional vortex mixing with other methods for disruption of bacterial aggregates and for its effect on cell viability.
View Article and Find Full Text PDFAim: To characterize inter- and intra-strain variability of variable-number tandem repeats (VNTRs) in Mycoplasma pneumoniae to determine the optimal multilocus VNTR analysis scheme for improved strain typing.
Methods: Whole genome assemblies and next-generation sequencing data from diverse M. pneumoniae isolates were used to characterize VNTRs and their variability, and to compare the strain discriminability of new VNTR and existing markers.