Publications by authors named "K Dvorakova-Hortova"

In vitro spermatogenesis (IVS) has already been successfully achieved in rodents by organotypic and soft matrix culture systems. However, the former does not allow single cell input, and the latter presents as a simple thick layer in which all cells are embedded. We explored a new culture system using a mouse model by employing an alginate-based hydrogel and 3D bioprinting, to control scaffold design and cell deposition.

View Article and Find Full Text PDF

Integrins are transmembrane cell receptors involved in two crucial mechanisms for successful fertilization, namely, mammalian intracellular signaling and cell adhesion. Integrins α6β4, α3β1 and α6β1 are three major laminin receptors expressed on the surface of mammalian cells including gametes, and the presence of individual integrin subunits α3, α6, β1 and β4 has been previously detected in mammalian sperm. However, to date, proof of the existence of individual heterodimer pairs in sperm and their detailed localization is missing.

View Article and Find Full Text PDF

17β-estradiol (estradiol) is a natural estrogen regulating reproduction including sperm and egg development, sperm maturation-called capacitation-and sperm⁻egg communication. High doses can increase germ cell apoptosis and decrease sperm count. Our aim was to answer the biological relevance of estradiol in sperm capacitation and its effect on motility and acrosome reaction to quantify its interaction with estrogen receptors and propose a model of estradiol action during capacitation using kinetic analysis.

View Article and Find Full Text PDF

Tetraspanins are multifunctional molecules located in specific microdomains on the plasma membrane. Thanks to their ability to form networks with other proteins they can participate in many cellular functions. Tetraspanins are part of the interactive network in gametes; however, their precise role in fertilization is not yet clear.

View Article and Find Full Text PDF

Cancer cells without mitochondrial DNA (mtDNA) do not form tumors unless they reconstitute oxidative phosphorylation (OXPHOS) by mitochondria acquired from host stroma. To understand why functional respiration is crucial for tumorigenesis, we used time-resolved analysis of tumor formation by mtDNA-depleted cells and genetic manipulations of OXPHOS. We show that pyrimidine biosynthesis dependent on respiration-linked dihydroorotate dehydrogenase (DHODH) is required to overcome cell-cycle arrest, while mitochondrial ATP generation is dispensable for tumorigenesis.

View Article and Find Full Text PDF