Rationale: Surface-assisted laser desorption/ionization (SALDI) mass spectrometry (MS) builds on the use of nanostructured surfaces (e.g., coatings of colloidal nanoparticles) to promote analyte desorption and ionization.
View Article and Find Full Text PDFThe successful application of matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) in pharmaceutical research is strongly dependent on the detection of the drug of interest at physiologically relevant concentrations. Here we explored how insufficient sensitivity due to low ionization efficiency and/or the interaction of the drug molecule with the local biochemical environment of the tissue can be mitigated for many compound classes using the recently introduced MALDI-MSI coupled with laser-induced postionization, known as MALDI-2-MSI. Leveraging a MALDI-MSI screen of about 1,200 medicines/drug-like compounds from a broad range of medicinal application areas, we demonstrate a significant improvement in drug detection and the degree of sensitivity uplift by using MALDI-2 versus traditional MALDI.
View Article and Find Full Text PDFLabel-free molecular imaging techniques such as matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) enable the direct and simultaneous mapping of hundreds of different metabolites in thin sections of biological tissues. However, in host-microbe interactions it remains challenging to localize microbes and to assign metabolites to the host versus members of the microbiome. We therefore developed a correlative imaging approach combining MALDI-MSI with fluorescence in situ hybridization (FISH) on the same section to identify and localize microbial cells.
View Article and Find Full Text PDFThe precise fatty acyl chain configuration of cardiolipin (CL), a tetrameric mitochondrial-specific membrane lipid, exhibits dependence on cell and tissue types. A powerful method to map CL profiles in tissue sections in a spatially resolved manner is matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI). To build on and explore this potential, we employed a quadrupole time-of-flight mass spectrometer along with optimized sample preparation protocols.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2022
Molecular analysis on the single-cell level represents a rapidly growing field in the life sciences. While bulk analysis from a pool of cells provides a general molecular profile, it is blind to heterogeneities between individual cells. This heterogeneity, however, is an inherent property of every cell population.
View Article and Find Full Text PDF