Publications by authors named "K Draoui"

The primary goal of the current work was to construct pH-sensitive nano and microcomposite hydrogel beads based on alginate (AL), carboxymethyl cellulose (CMC), biochar (BC), and two Moroccan clays: Ghassoul (swelling SW) and red (not swelling NSW) nano and microhybrid. The adsorbents, SW + AL, SW + AL + BC, SW + AL + CMC, NSW + AL, NSW + AL + BC, NSW + AL + CMC, AL, and AL + CMC were prepared for the adsorption of the antibiotic sulfadiazine (SDZ). The test samples were characterized using a variety of techniques, including X-Ray Diffraction (XRD), IR spectroscopy (FT-IR), and scanning electron microscopy (SEM), with the molecular structures of the studied additives geometrically optimized using the DFT/B3LYP method and the function 6-311G(d).

View Article and Find Full Text PDF

This work presents a significant investigation involving both electrochemical experiment and quantum chemical simulation approaches. The objective was to characterize the electrochemical detection of dopamine (DA). The detection was carried out using a modified carbon paste electrode (CPE) incorporating bentonite (Bent) and l-cysteine (CySH) (named as CySH/Bent/CPE).

View Article and Find Full Text PDF
Article Synopsis
  • This study focuses on creating an effective electrochemical electrode by adding potassium montmorillonite (MMT) clay to a carbon matrix, aimed at accurately detecting paracetamol (PAR) in pharmaceuticals.
  • The electrode's performance is characterized using methods like cyclic voltammetry and differential pulse voltammetry, showing a responsive detection range for PAR and a low limit of detection (0.46 μM) with around 94% recovery.
  • The research utilizes density functional theory (DFT) and Monte Carlo simulations to explore PAR's interactions on the electrode surface, confirming strong correlations between theoretical predictions and experimental findings, leading to a sensor with rapid response, high sensitivity, and durability.
View Article and Find Full Text PDF

The purpose of this research was to learn more about the primary and secondary properties of Moroccan natural clay in an effort to better investigate innovative adsorbents and gain access to an ideal adsorption system. Scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy analysis (SEM-EDX) and X-ray fluorescence were employed for identification. SEM revealed clay grains, including tiny particles and unevenly shaped sticks.

View Article and Find Full Text PDF

The current work describes the synthesis of carbonaceous composites pyrolysis, based on CMF, extracted from Alfa fibers, and Moroccan clay ghassoul (Gh), for potential use in heavy metal removal from wastewater. Following synthesis, the carbonaceous ghassoul (ca-Gh) material was characterized using X-ray fluorescence (XRF), Scanning Electron Microscopy coupled with Energy Dispersive X-ray (SEM-EDX), zeta-potential and Brunauer-Emmett-Teller (BET). The material was then used as an adsorbent for the removal of cadmium (Cd) from aqueous solutions.

View Article and Find Full Text PDF