Publications by authors named "K Domagala"

Cysteine and glutathione can be applied as therapeutic targets in civilization diseases such as diabetes mellitus and cancers. On the other hand, an elevated concentration of homocysteine, and its metabolites such as homocysteine thiolactone and Nɛ-homocysteinyllysine result in health problems and has been indicated as an independent risk factor for cardiovascular disease and accelerated atherosclerosis. This work describes the first simplified HPLC-UV method that allows simultaneous determination of Nɛ-homocysteinyllysine isopeptide, cysteine, glutathione and homocysteine in human plasma.

View Article and Find Full Text PDF

Point-of-use ceramic filters are one of the strategies to address problems associated with waterborne diseases to remove harmful microorganisms in water sources prior to its consumption. In this study, development of adsorption-based ceramic depth filters composed of alumina platelets was achieved using spray granulation (calcined at 800 °C). Their virus retention performance was assessed using cartridges containing granular material (4 g) with two virus surrogates: MS2 and fr bacteriophages.

View Article and Find Full Text PDF

Activated carbon (AC) exhibits superior sorption properties compared to other porous materials, due to well-developed porous structures and high surface areas. Therefore, it is widely applied in its various forms in water purification to remove a diverse range of contaminating species. The presence of viruses in fresh water bodies poses a serious issue for human health.

View Article and Find Full Text PDF

A leading challenge in drinking water treatment is to remove small-sized viruses from the water in a simple and efficient manner. Multi-walled carbon nanotubes (MWCNT) are new generation adsorbents with previously demonstrated potential as filter media to improve virus removal. This study therefore aimed to evaluate the field applicability of MWCNT-filters for virus removal in water containing natural organic matter (NOM) as co-solute to viruses, using batch equilibrium experiments.

View Article and Find Full Text PDF

Both multi-walled carbon nanotubes (MWCNTs) and metal or metal oxides have demonstrated virus removal efficacy in drinking water applications. In this study, MWCNTs were coated with copper(I) oxide (CuO) using three distinct synthesis procedures (copper ion attachment, copper hydroxide precipitation, and [Cu(NH)] complex attachment) and virus removal efficacy (using MS2 bacteriophages) was evaluated. All synthesis procedures resulted in the presence of adsorbed, nanosized CuO particles on the MWCNTs, shown using X-ray diffraction.

View Article and Find Full Text PDF