Graphene has garnered significant interest in optoelectronics due to its unique properties, including broad wavelength absorption and high mobility. However, its weak stability in ambient conditions requires encapsulation for practical applications. In this study, we investigate graphene CVD-grown field-effect transistors fabricated on Si/SiOwafers, encapsulated with aluminum oxide (AlO) of different thicknesses.
View Article and Find Full Text PDFResearch on liver-related conditions requires a robust and efficient method to purify viable hepatocytes, lymphocytes and all other liver resident cells, such as Kupffer or liver sinusoidal endothelial cells. Here we describe a novel purification method using liver enzymatic digestion, followed by a downstream optimized purification. Using this enzymatic digestion protocol, the resident liver cells as well as viable hepatocytes could be captured, compared to the classical mechanical liver disruption method.
View Article and Find Full Text PDFWe present the electrical characterization of wafer-scale graphene devices fabricated with an industrially-relevant, contact-first integration scheme combined with AlOencapsulation via atomic layer deposition. All the devices show a statistically significant reduction in the Dirac point position,Vcnp, from around +47 V to between -5 and 5 V (on 285 nm SiO), while maintaining the mobility values. The data and methods presented are relevant for further integration of graphene devices, specifically sensors, at the back-end-of-line of a standard CMOS flow.
View Article and Find Full Text PDFThe presented paper discusses the production of radioactive ion beams of francium, radium, and actinium from thick uranium carbide (UC ) targets at ISOLDE, CERN. This study focuses on the release curves and extractable yields of francium, radium and actinium isotopes. The ion source temperature was varied in order to study the relative contributions of surface and laser ionization to the production of the actinium ion beams.
View Article and Find Full Text PDF