The electromechanical response of polymeric soft matter to applied electric fields is of fundamental scientific interest as well as relevant to technologies for sensing and actuation. Several existing theoretical and numerical approaches for polarizable polymers subject to a combined applied electric field and stretch are based on discrete monomer models. In these models, accounting for the interactions between the induced dipoles on monomers is challenging due to the nonlocality of these interactions.
View Article and Find Full Text PDFLiquid crystalline elastomers (LCEs) are active materials that are of interest due to their programmable response to various external stimuli such as light and heat. When exposed to these stimuli, the anisotropy in the response of the material is governed by the nematic director, which is a continuum parameter that is defined as the average local orientation of the mesogens in the liquid crystal phase. This nematic director can be programmed to be heterogeneous in space, creating a vast design space that is useful for applications ranging from artificial ligaments to deployable structures to self-assembling mechanisms.
View Article and Find Full Text PDFPolymer networks formed by cross linking flexible polymer chains are ubiquitous in many natural and synthetic soft-matter systems. Current micromechanics models generally do not account for excluded volume interactions except, for instance, through imposing a phenomenological incompressibility constraint at the continuum scale. This work aims to examine the role of excluded volume interactions on the mechanical response.
View Article and Find Full Text PDFNext-generation structural materials are expected to be lightweight, high-strength and tough composites with embedded functionalities to sense, adapt, self-repair, morph and restore. This Review highlights recent developments and concepts in bioinspired nanocomposites, emphasizing tailoring of the architecture, interphases and confinement to achieve dynamic and synergetic responses. We highlight cornerstone examples from natural materials with unique mechanical property combinations based on relatively simple building blocks produced in aqueous environments under ambient conditions.
View Article and Find Full Text PDFStatistical mechanics is an important tool for understanding polymer electroelasticity because the elasticity of polymers is primarily due to entropy. However, a common approach for the statistical mechanics of polymer chains, the Gaussian chain approximation, misses key physics. By considering the nonlinearities of the problem, we show a strong coupling between the deformation of a polymer chain and its dielectric response, that is, its net dipole.
View Article and Find Full Text PDF