Publications by authors named "K D Menzies"

Article Synopsis
  • Preeclampsia (PE) is a serious pregnancy-related condition linked to high blood pressure and poor health outcomes, with no effective treatments currently available.
  • Researchers found that specific subclasses of PE, particularly those marked by high levels of inflammation, have decreased levels of NAD, a crucial molecule for energy and cellular function.
  • Boosting NAD levels with nicotinamide riboside (NR) showed promise in preventing complications of inflammation-driven PE in both lab studies and an animal model, suggesting it could be a potential preventative strategy for this condition.
View Article and Find Full Text PDF

Aging increases the risk of age-related diseases, imposing substantial healthcare and personal costs. Targeting fundamental aging mechanisms pharmacologically can promote healthy aging and reduce this disease susceptibility. In this work, we employed transcriptome-based drug screening to identify compounds emulating transcriptional signatures of long-lived genetic interventions.

View Article and Find Full Text PDF

CARM1 (coactivator associated arginine methyltransferase 1) has recently emerged as a powerful regulator of skeletal muscle biology. However, the molecular mechanisms by which the methyltransferase remodels muscle remain to be fully understood. In this study, skeletal muscle-specific knockout (mKO) mice exhibited lower muscle mass with dysregulated macroautophagic/autophagic and atrophic signaling, including depressed AMP-activated protein kinase (AMPK) site-specific phosphorylation of ULK1 (unc-51 like autophagy activating kinase 1; Ser555) and FOXO3 (forkhead box O3; Ser588), as well as MTOR (mechanistic target of rapamycin kinase)-induced inhibition of ULK1 (Ser757), along with AKT/protein kinase B site-specific suppression of FOXO1 (Ser256) and FOXO3 (Ser253).

View Article and Find Full Text PDF

Preeclampsia (PE), a hypertensive pregnancy disorder, can originate from varied etiology. Placenta malperfusion has long been considered the primary cause of PE. However, we and others have showed that this disorder can also result from heightened inflammation at the maternal-fetal interface.

View Article and Find Full Text PDF

Background: Radiation-induced muscle pathology, characterized by muscle atrophy and fibrotic tissue accumulation, is the most common debilitating late effect of therapeutic radiation exposure particularly in juvenile cancer survivors. In healthy muscle, fibro/adipogenic progenitors (FAPs) are required for muscle maintenance and regeneration, while in muscle pathology FAPs are precursors for exacerbated extracellular matrix deposition. However, the role of FAPs in radiation-induced muscle pathology has not previously been explored.

View Article and Find Full Text PDF