Traditionally, mathematical models in ecology placed an emphasis on asymptotic, long-term dynamics. However, a large number of recent studies highlighted the importance of transient dynamics in ecological and eco-evolutionary systems, in particular 'long transients' that can last for hundreds of generations or even longer. Many models as well as empirical studies indicated that a system can function for a long time in a certain state or regime (a 'metastable regime') but later exhibits an abrupt transition to another regime not preceded by any parameter change (or following the change that occurred long before the transition).
View Article and Find Full Text PDFDog vaccination is the key to controlling rabies in human populations. However, in countries like India, with large free-roaming dog populations, vaccination strategies that rely only on parenteral vaccines are unlikely to be either feasible or successful. Oral rabies vaccines could be used to reach these dogs.
View Article and Find Full Text PDFThere is a growing recognition that ecological systems can spend extended periods of time far away from an asymptotic state, and that ecological understanding will therefore require a deeper appreciation for how long ecological transients arise. Recent work has defined classes of deterministic mechanisms that can lead to long transients. Given the ubiquity of stochasticity in ecological systems, a similar systematic treatment of transients that includes the influence of stochasticity is important.
View Article and Find Full Text PDFThe underlying biological processes that govern many ecological systems can create very long periods of transient dynamics. It is often difficult or impossible to distinguish this transient behaviour from similar dynamics that would persist indefinitely. In some cases, a shift from the transient to the long-term, stable dynamics may occur in the absence of any exogenous forces.
View Article and Find Full Text PDF