Publications by authors named "K Crombe"

Article Synopsis
  • The study characterized plasma parameters and neutral particle energies in a Toroidal Magnetized System (TOMAS) using a movable triple Langmuir probe and a time-of-flight neutral particle analyzer.
  • The focus was on measuring electron densities, temperatures, and the energies and fluxes of neutral particles under varying total injected power and antenna frequencies.
  • The findings aim to enhance understanding of neutral particle behavior in low-energy wall conditioning plasmas.
View Article and Find Full Text PDF

A new deuterium-tritium experimental, DTE2, campaign has been conducted at the Joint European Torus (JET) between August 2021 and late December 2021. Motivated by significant enhancements in the past decade at JET, such as the ITER-like wall and enhanced auxiliary heating power, the campaign achieved a new fusion energy world record and performed a broad range of fundamental experiments to inform ITER physics scenarios and operations. New capabilities in the area of fusion product measurements by nuclear diagnostics were available as a result of a decade long enhancement program.

View Article and Find Full Text PDF

The Toroidal Magnetized System device has been significantly upgraded to enable development of various wall conditioning techniques, including methods based on ion and electron cyclotron (IC/EC) range of frequency plasmas, and to complement plasma-wall interaction research in tokamaks and stellarators. The toroidal magnetic field generated by 16 coils can reach its maximum of 125 mT on the toroidal axis. The EC system is operated at 2.

View Article and Find Full Text PDF

An ongoing objective in the ion cyclotron range of frequencies (ICRF) systems is the improvement of power coupling to the plasma. During the last decade, this goal has been mainly pursued through the study of the coupling resistance, either by optimizing the antenna layout or by tailoring the scrape-off layer profile with gas puffing. Another approach is to increase the voltage handling capability of the ICRF system, limited by breakdown in the launchers or in the transmission lines.

View Article and Find Full Text PDF

A multichannel spectroscopic diagnostic based on the Stark effect on helium lines was developed and implemented in IShTAR (Ion Cyclotron Sheath Test ARrangement) to measure the spatial distribution of electric fields across the radio frequency sheaths of the ion cyclotron antenna. Direct measurements of the DC electric fields in the antenna sheaths are an important missing component in understanding the antenna-plasma edge interactions in magnetically confined fusion plasmas since they will be used to benchmark theoretical models against real antenna operation. Along with the high-resolution Czerny-Turner monochromator and a detector with an intensifier, the hardware relies on the 2 chained set of linear-to-linear fiber bundles that provide seven optical channels capable of resolving an 8.

View Article and Find Full Text PDF