Cerium oxide nanoparticles possess unique properties that make them promising candidates in various fields, including cancer treatment. Among the proposed synthesis methods for CNPs, biosynthesis using natural extracts, offers an eco-friendly and convenient approach for producing CNPs, particularly for biomedical applications. In this study, a novel method of biosynthesis using the aqueous extract of Eucalyptus camaldulensis leaves was used to synthesize CNPs.
View Article and Find Full Text PDFThere are few data on the real-world effectiveness of COVID-19 vaccines and boosting in Africa, which experienced widespread SARS-CoV-2 infection before vaccine availability. We assessed the association between vaccination and severe COVID-19 in the Western Cape, South Africa, in an observational cohort study of >2 million adults during 2020-2022. We described SARS-CoV-2 testing, COVID-19 outcomes, and vaccine uptake over time.
View Article and Find Full Text PDFNanoparticles (NPs) are becoming increasingly important novel materials for many purposes, including basic research, medicine, agriculture, and engineering. Increasing human and environmental exposure to these promising compounds requires assessment of their potential health risks. While the general direct cytotoxicity of NPs is often routinely measured, more indirect possible long-term effects, such as reproductive or developmental neurotoxicity (DNT), have been studied only occasionally and, if so, mostly on non-human animal models, such as zebrafish embryos.
View Article and Find Full Text PDFBackground: There are few data on the real-world effectiveness of COVID-19 vaccines and boosting in Africa, which experienced high levels of SARS-CoV-2 infection in a mostly vaccine-naïve population, and has limited vaccine coverage and competing health service priorities. We assessed the association between vaccination and severe COVID-19 in the Western Cape, South Africa.
Methods: We performed an observational cohort study of >2 million adults during 2020-2022.
This study reports the effects of a computationally informed and avocado-seed mediated Phyto engineered CuS nanoparticles as fertilizing agent on the ionome and amino acid metabolome of Pinto bean seeds using both bench top and ion beam analytical techniques. Physico-chemical analysis of the Phyto engineered nanoparticles with scanning-electron microscopy, transmission electron microscopy, X-ray diffraction, and Fourier Transform Infrared Spectroscopy confirmed the presence of CuS nanoparticles. Molecular dynamics simulations to investigate the interaction of some active phytocompounds in avocado seeds that act as reducing agents with the nano-digenite further showed that 4-hydroxybenzoic acid had a higher affinity for interacting with the nanoparticle's surface than other active compounds.
View Article and Find Full Text PDF